Utility that prints the name of correlated variables and the relative correlation coefficient value.
Arguments
- bg
SWD object with the locations used to compute the correlation between environmental variables.
- method
character. The method used to compute the correlation matrix.
- cor_th
numeric. If provided it prints only the variables whose correlation coefficient is higher or lower than the given threshold.
- order
logical. If
TRUE
the variable are ordered from the most to the less highly correlated.- remove_diagonal
logical. If
TRUE
the values in the diagonal are removed.
Examples
# Acquire environmental variables
files <- list.files(path = file.path(system.file(package = "dismo"), "ex"),
pattern = "grd",
full.names = TRUE)
predictors <- terra::rast(files)
# Prepare background locations
bg_coords <- terra::spatSample(predictors,
size = 10000,
method = "random",
na.rm = TRUE,
xy = TRUE,
values = FALSE)
#> Warning: [spatSample] fewer cells returned than requested
# Create SWD object
bg <- prepareSWD(species = "Virtual species",
a = bg_coords,
env = predictors,
categorical = "biome")
#> ℹ Extracting predictor information for absence/background locations
#> ✔ Extracting predictor information for absence/background locations [86ms]
#>
# Get the correlation among all the environmental variables
corVar(bg,
method = "spearman")
#> Var1 Var2 value
#> 1 bio1 bio6 0.95135409
#> 2 bio12 bio16 0.94475589
#> 3 bio6 bio7 -0.87344980
#> 4 bio1 bio8 0.84596493
#> 5 bio16 bio6 0.74712692
#> 6 bio6 bio8 0.72867234
#> 7 bio1 bio7 -0.71191347
#> 8 bio16 bio7 -0.70275684
#> 9 bio1 bio16 0.70235845
#> 10 bio12 bio17 0.69149337
#> 11 bio12 bio6 0.68648556
#> 12 bio12 bio7 -0.67400573
#> 13 bio5 bio8 0.64898352
#> 14 bio1 bio12 0.62722952
#> 15 bio1 bio5 0.53417673
#> 16 bio16 bio17 0.46633132
#> 17 bio16 bio8 0.45811313
#> 18 bio7 bio8 -0.44179392
#> 19 bio12 bio8 0.38856291
#> 20 bio17 bio7 -0.34811898
#> 21 bio5 bio6 0.30086090
#> 22 bio17 bio6 0.26811250
#> 23 bio1 bio17 0.18529719
#> 24 bio16 bio5 0.15713642
#> 25 bio17 bio5 -0.13452379
#> 26 bio5 bio7 0.10995326
#> 27 bio12 bio5 0.09855589
#> 28 bio17 bio8 0.09219238
# Get the environmental variables that have a correlation greater or equal to
# the given threshold
corVar(bg,
method = "pearson",
cor_th = 0.8)
#> Var1 Var2 value
#> 1 bio12 bio16 0.9314559
#> 2 bio1 bio6 0.9247660
#> 3 bio6 bio7 -0.8576052
#> 4 bio1 bio8 0.8552133