
Package index
-
addSamplesToBg() - Add Samples to Background
-
prepareSWD() - Prepare an SWD object
-
randomFolds() - Create Random Folds
-
thinData() - Thin Data
-
trainValTest() - Train, Validation and Test datasets
-
getTunableArgs() - Get Tunable Arguments
-
modelReport() - Model Report
-
maxentTh() - MaxEnt Thresholds
-
maxentVarImp() - Maxent Variable Importance
-
predict(<ANN>) - Predict ANN
-
predict(<BRT>) - Predict BRT
-
predict(<Maxent>) - Predict Maxent
-
predict(<Maxnet>) - Predict Maxnet
-
predict(<RF>) - Predict RF
-
predict(<SDMmodel>) - Predict
-
predict(<SDMmodelCV>) - Predict for Cross Validation
-
train() - Train
-
thresholds() - Thresholds
-
varImp() - Variable Importance
-
aicc() - AICc
-
auc() - AUC
-
confMatrix() - Confusion Matrix
-
doJk() - Jackknife Test
-
tss() - True Skill Statistics
-
plotCor() - Plot Correlation
-
plotJk() - Plot Jackknife Test
-
show(<SDMtune>)plot(<SDMtune>,<missing>) - SDMtune class
-
plotPA() - Plot Presence Absence Map
-
plotPred() - Plot Prediction
-
plotResponse() - Plot Response Curve
-
plotROC() - Plot ROC curve
-
plotVarImp() - Plot Variable Importance
-
checkMaxentInstallation() - Check Maxent Installation
-
combineCV() - Combine Cross Validation models
-
mergeSWD() - Merge SWD Objects
-
SDMmodel2MaxEnt() - SDMmodel2MaxEnt
-
swd2csv() - SWD to csv
-
virtualSp - Virtual Species
-
show(<ANN>) - Artificial Neural Network
-
show(<BRT>) - Boosted Regression Tree
-
show(<Maxent>) - Maxent
-
show(<Maxnet>) - Maxnet
-
show(<RF>) - Random Forest
-
show(<SDMmodel>) - SDMmodel
-
show(<SDMmodelCV>) - SDMmodelCV
-
show(<SDMtune>)plot(<SDMtune>,<missing>) - SDMtune class
-
show(<SWD>) - Sample With Data