Package index
-
addSamplesToBg()
- Add Samples to Background
-
prepareSWD()
- Prepare an SWD object
-
randomFolds()
- Create Random Folds
-
thinData()
- Thin Data
-
trainValTest()
- Train, Validation and Test datasets
-
getTunableArgs()
- Get Tunable Arguments
-
modelReport()
- Model Report
-
maxentTh()
- MaxEnt Thresholds
-
maxentVarImp()
- Maxent Variable Importance
-
predict(<ANN>)
- Predict ANN
-
predict(<BRT>)
- Predict BRT
-
predict(<Maxent>)
- Predict Maxent
-
predict(<Maxnet>)
- Predict Maxnet
-
predict(<RF>)
- Predict RF
-
predict(<SDMmodel>)
- Predict
-
predict(<SDMmodelCV>)
- Predict for Cross Validation
-
train()
- Train
-
thresholds()
- Thresholds
-
varImp()
- Variable Importance
-
aicc()
- AICc
-
auc()
- AUC
-
confMatrix()
- Confusion Matrix
-
doJk()
- Jackknife Test
-
tss()
- True Skill Statistics
-
plotCor()
- Plot Correlation
-
plotJk()
- Plot Jackknife Test
-
show(<SDMtune>)
plot(<SDMtune>,<missing>)
- SDMtune class
-
plotPA()
- Plot Presence Absence Map
-
plotPred()
- Plot Prediction
-
plotResponse()
- Plot Response Curve
-
plotROC()
- Plot ROC curve
-
plotVarImp()
- Plot Variable Importance
-
checkMaxentInstallation()
- Check Maxent Installation
-
combineCV()
- Combine Cross Validation models
-
mergeSWD()
- Merge SWD Objects
-
SDMmodel2MaxEnt()
- SDMmodel2MaxEnt
-
swd2csv()
- SWD to csv
-
virtualSp
- Virtual Species
-
show(<ANN>)
- Artificial Neural Network
-
show(<BRT>)
- Boosted Regression Tree
-
show(<Maxent>)
- Maxent
-
show(<Maxnet>)
- Maxnet
-
show(<RF>)
- Random Forest
-
show(<SDMmodel>)
- SDMmodel
-
show(<SDMmodelCV>)
- SDMmodelCV
-
show(<SDMtune>)
plot(<SDMtune>,<missing>)
- SDMtune class
-
show(<SWD>)
- Sample With Data