Skip to contents

Train a model using one of the following methods: Artificial Neural Networks, Boosted Regression Trees, Maxent, Maxnet or Random Forest.

Usage

train(method, data, folds = NULL, progress = TRUE, ...)

Arguments

method

character or character vector. Method used to train the model, possible values are "ANN", "BRT", "Maxent", "Maxnet" or "RF", see details.

data

SWD object with presence and absence/background locations.

folds

list. Output of the function randomFolds or folds object created with other packages, see details.

progress

logical. If TRUE shows a progress bar during cross validation.

...

Arguments passed to the relative method, see details.

Value

An SDMmodel or SDMmodelCV or a list of model objects.

Details

  • For the ANN method possible arguments are (for more details see nnet):

    • size: integer. Number of the units in the hidden layer.

    • decay numeric. Weight decay, default is 0.

    • rang numeric. Initial random weights, default is 0.7.

    • maxit integer. Maximum number of iterations, default is 100.

  • For the BRT method possible arguments are (for more details see gbm):

    • distribution: character. Name of the distribution to use, default is "bernoulli".

    • n.trees: integer. Maximum number of tree to grow, default is 100.

    • interaction.depth: integer. Maximum depth of each tree, default is 1.

    • shrinkage: numeric. The shrinkage parameter, default is 0.1.

    • bag.fraction: numeric. Random fraction of data used in the tree expansion, default is 0.5.

  • For the RF method the model is trained as classification. Possible arguments are (for more details see randomForest):

    • mtry: integer. Number of variable randomly sampled at each split, default is floor(sqrt(number of variables)).

    • ntree: integer. Number of tree to grow, default is 500.

    • nodesize: integer. Minimum size of terminal nodes, default is 1.

  • Maxent models are trained using the arguments "removeduplicates=false" and "addsamplestobackground=false". Use the function thinData to remove duplicates and the function addSamplesToBg to add presence locations to background locations. For the Maxent method, possible arguments are:

    • reg: numeric. The value of the regularization multiplier, default is 1.

    • fc: character. The value of the feature classes, possible values are combinations of "l", "q", "p", "h" and "t", default is "lqph".

    • iter: numeric. Number of iterations used by the MaxEnt algorithm, default is 500.

  • Maxnet models are trained using the argument "addsamplestobackground = FALSE", use the function addSamplesToBg to add presence locations to background locations. For the Maxnet method, possible arguments are (for more details see maxnet):

    • reg: numeric. The value of the regularization intensity, default is 1.

    • fc: character. The value of the feature classes, possible values are combinations of "l", "q", "p", "h" and "t", default is "lqph".

The folds argument accepts also objects created with other packages: ENMeval or blockCV. In this case the function converts internally the folds into a format valid for SDMtune.

When multiple methods are given as method argument, the function returns a named list of model object, with the name corresponding to the used method, see examples.

References

Venables, W. N. & Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth Edition. Springer, New York. ISBN 0-387-95457-0.

Brandon Greenwell, Bradley Boehmke, Jay Cunningham and GBM Developers (2019). gbm: Generalized Boosted Regression Models. https://CRAN.R-project.org/package=gbm.

A. Liaw and M. Wiener (2002). Classification and Regression by randomForest. R News 2(3), 18–22.

Hijmans, Robert J., Steven Phillips, John Leathwick, and Jane Elith. 2017. dismo: Species Distribution Modeling. https://cran.r-project.org/package=dismo.

Steven Phillips (2017). maxnet: Fitting 'Maxent' Species Distribution Models with 'glmnet'. https://CRAN.R-project.org/package=maxnet.

Muscarella, R., Galante, P.J., Soley-Guardia, M., Boria, R.A., Kass, J., Uriarte, M. and R.P. Anderson (2014). ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for ecological niche models. Methods in Ecology and Evolution.

Roozbeh Valavi, Jane Elith, José Lahoz-Monfort and Gurutzeta Guillera-Arroita (2018). blockCV: Spatial and environmental blocking for k-fold cross-validation. https://github.com/rvalavi/blockCV.

See also

Author

Sergio Vignali

Examples

# Acquire environmental variables
files <- list.files(path = file.path(system.file(package = "dismo"), "ex"),
                    pattern = "grd",
                    full.names = TRUE)

predictors <- terra::rast(files)

# Prepare presence and background locations
p_coords <- virtualSp$presence
bg_coords <- virtualSp$background

# Create SWD object
data <- prepareSWD(species = "Virtual species",
                   p = p_coords,
                   a = bg_coords,
                   env = predictors,
                   categorical = "biome")
#>  Extracting predictor information for presence locations
#>  Extracting predictor information for presence locations [20ms]
#> 
#>  Extracting predictor information for absence/background locations
#>  Extracting predictor information for absence/background locations [45ms]
#> 

## Train a Maxent model
model <- train(method = "Maxent",
               data = data,
               fc = "l",
               reg = 1.5,
               iter = 700)

# Add samples to background. This should be done preparing the data before
# training the model without using
data <- addSamplesToBg(data)
model <- train("Maxent",
               data = data)

## Train a Maxnet model
model <- train(method = "Maxnet",
               data = data,
               fc = "lq",
               reg = 1.5)

## Cross Validation
# Create 4 random folds splitting only the presence data
folds <- randomFolds(data,
                     k = 4,
                     only_presence = TRUE)

model <- train(method = "Maxnet",
               data = data,
               fc = "l",
               reg = 0.8,
               folds = folds)

if (FALSE) { # \dontrun{
# Run only if you have the package ENMeval installed
## Block partition using the ENMeval package
require(ENMeval)
block_folds <- get.block(occ = data@coords[data@pa == 1, ],
                         bg.coords = data@coords[data@pa == 0, ])

model <- train(method = "Maxnet",
               data = data,
               fc = "l",
               reg = 0.8,
               folds = block_folds)

## Checkerboard1 partition using the ENMeval package
cb_folds <- get.checkerboard1(occ = data@coords[data@pa == 1, ],
                              env = predictors,
                              bg.coords = data@coords[data@pa == 0, ],
                              aggregation.factor = 4)

model <- train(method = "Maxnet",
               data = data,
               fc = "l",
               reg = 0.8,
               folds = cb_folds)

## Environmental block using the blockCV package
# Run only if you have the package blockCV
require(blockCV)
# Create sf object
sf_df <- sf::st_as_sf(cbind(data@coords, pa = data@pa),
                      coords = c("X", "Y"),
                      crs = terra::crs(predictors,
                                       proj = TRUE))

# Spatial blocks
spatial_folds <- cv_spatial(x = sf_df,
                            column = "pa",
                            rows_cols = c(8, 10),
                            k = 5,
                            hexagon = FALSE,
                            selection = "systematic")

model <- train(method = "Maxnet",
               data = data,
               fc = "l",
               reg = 0.8,
               folds = spatial_folds)} # }

## Train presence absence models
# Prepare presence and absence locations
p_coords <- virtualSp$presence
a_coords <- virtualSp$absence
# Create SWD object
data <- prepareSWD(species = "Virtual species",
                   p = p_coords,
                   a = a_coords,
                   env = predictors[[1:5]])
#>  Extracting predictor information for presence locations
#>  Extracting predictor information for presence locations [26ms]
#> 
#>  Extracting predictor information for absence/background locations
#>  Extracting predictor information for absence/background locations [24ms]
#> 

## Train an Artificial Neural Network model
model <- train("ANN",
               data = data,
               size = 10)

## Train a Random Forest model
model <- train("RF",
               data = data,
               ntree = 300)

## Train a Boosted Regression Tree model
model <- train("BRT",
               data = data,
               n.trees = 300,
               shrinkage = 0.001)

## Multiple methods trained together with default arguments
output <- train(method = c("ANN", "BRT", "RF"),
                data = data,
                size = 10)
output$ANN
#> 
#> ── Object of class: <SDMmodel> ──
#> 
#> Method: Artificial Neural Networks
#> 
#> ── Hyperparameters 
#>size: 10
#>decay: 0
#>rang: 0.7
#>maxit: 100
#> 
#> ── Info 
#>Species: Virtual species
#>Presence locations: 400
#>Absence locations: 300
#> 
#> ── Variables 
#>Continuous: "bio1", "bio12", "bio16", "bio17", and "bio5"
#>Categorical: NA
output$BRT
#> 
#> ── Object of class: <SDMmodel> ──
#> 
#> Method: Boosted Regression Trees
#> 
#> ── Hyperparameters 
#>distribution: "bernoulli"
#>n.trees: 100
#>interaction.depth: 1
#>shrinkage: 0.1
#>bag.fraction: 0.5
#> 
#> ── Info 
#>Species: Virtual species
#>Presence locations: 400
#>Absence locations: 300
#> 
#> ── Variables 
#>Continuous: "bio1", "bio12", "bio16", "bio17", and "bio5"
#>Categorical: NA
output$RF
#> 
#> ── Object of class: <SDMmodel> ──
#> 
#> Method: Random Forest
#> 
#> ── Hyperparameters 
#>mtry: 2
#>ntree: 500
#>nodesize: 1
#> 
#> ── Info 
#>Species: Virtual species
#>Presence locations: 400
#>Absence locations: 300
#> 
#> ── Variables 
#>Continuous: "bio1", "bio12", "bio16", "bio17", and "bio5"
#>Categorical: NA

## Multiple methods trained together passing extra arguments
output <- train(method = c("ANN", "BRT", "RF"),
                data = data,
                size = 10,
                ntree = 300,
                n.trees = 300,
                shrinkage = 0.001)
output
#> $ANN
#> 
#> ── Object of class: <SDMmodel> ──
#> 
#> Method: Artificial Neural Networks
#> 
#> ── Hyperparameters 
#>size: 10
#>decay: 0
#>rang: 0.7
#>maxit: 100
#> 
#> ── Info 
#>Species: Virtual species
#>Presence locations: 400
#>Absence locations: 300
#> 
#> ── Variables 
#>Continuous: "bio1", "bio12", "bio16", "bio17", and "bio5"
#>Categorical: NA
#> 
#> $BRT
#> 
#> ── Object of class: <SDMmodel> ──
#> 
#> Method: Boosted Regression Trees
#> 
#> ── Hyperparameters 
#>distribution: "bernoulli"
#>n.trees: 300
#>interaction.depth: 1
#>shrinkage: 0.001
#>bag.fraction: 0.5
#> 
#> ── Info 
#>Species: Virtual species
#>Presence locations: 400
#>Absence locations: 300
#> 
#> ── Variables 
#>Continuous: "bio1", "bio12", "bio16", "bio17", and "bio5"
#>Categorical: NA
#> 
#> $RF
#> 
#> ── Object of class: <SDMmodel> ──
#> 
#> Method: Random Forest
#> 
#> ── Hyperparameters 
#>mtry: 2
#>ntree: 300
#>nodesize: 1
#> 
#> ── Info 
#>Species: Virtual species
#>Presence locations: 400
#>Absence locations: 300
#> 
#> ── Variables 
#>Continuous: "bio1", "bio12", "bio16", "bio17", and "bio5"
#>Categorical: NA
#>