Computes Confusion Matrixes for threshold values varying from 0 to 1.
Arguments
- model
SDMmodel object.
- test
SWD testing locations, if not provided it uses the training dataset.
- th
numeric vector. If provided it computes the evaluation at the given thresholds. Default is
NULL
and it computes the evaluation for the unique predicted values at presence and absence/background locations.- type
character. The output type used for "Maxent" and "Maxnet" methods, possible values are "cloglog" and "logistic".
Details
For models trained with the Maxent method the argument
type
can be: "raw", "logistic" and "cloglog".For models trained with the Maxnet method the argument
type
can be: "link", "exponential", "logistic" and "cloglog", see maxnet for more details.
Examples
# Acquire environmental variables
files <- list.files(path = file.path(system.file(package = "dismo"), "ex"),
pattern = "grd",
full.names = TRUE)
predictors <- terra::rast(files)
# Prepare presence and background locations
p_coords <- virtualSp$presence
bg_coords <- virtualSp$background
# Create SWD object
data <- prepareSWD(species = "Virtual species",
p = p_coords,
a = bg_coords,
env = predictors,
categorical = "biome")
#> ℹ Extracting predictor information for presence locations
#> ✔ Extracting predictor information for presence locations [20ms]
#>
#> ℹ Extracting predictor information for absence/background locations
#> ✔ Extracting predictor information for absence/background locations [46ms]
#>
# Train a model
model <- train(method = "Maxnet",
data = data,
fc = "l")
# Get the confusion matrix for thresholds ranging from 0 to 1
cm <- confMatrix(model,
type = "cloglog")
head(cm)
#> th tp fp fn tn
#> 1 0.000000000 400 5000 0 0
#> 2 0.002786585 400 5000 0 0
#> 3 0.003520421 400 4999 0 1
#> 4 0.003616260 400 4998 0 2
#> 5 0.003668746 400 4997 0 3
#> 6 0.003691408 400 4996 0 4
tail(cm)
#> th tp fp fn tn
#> 5204 0.9933962 0 5 400 4995
#> 5205 0.9940262 0 4 400 4996
#> 5206 0.9960225 0 3 400 4997
#> 5207 0.9965570 0 2 400 4998
#> 5208 0.9970066 0 1 400 4999
#> 5209 1.0000000 0 0 400 5000
# Get the confusion matrix for a specific threshold
confMatrix(model,
type = "logistic",
th = 0.6)
#> th tp fp fn tn
#> 1 0.6 126 410 274 4590