Returns the value of the thresholds generated by the MaxEnt software.
Arguments
- model
SDMmodel object trained using the "Maxent" method.
Examples
# Acquire environmental variables
files <- list.files(path = file.path(system.file(package = "dismo"), "ex"),
pattern = "grd",
full.names = TRUE)
predictors <- terra::rast(files)
# Prepare presence and background locations
p_coords <- virtualSp$presence
bg_coords <- virtualSp$background
# Create SWD object
data <- prepareSWD(species = "Virtual species",
p = p_coords,
a = bg_coords,
env = predictors,
categorical = "biome")
#> ℹ Extracting predictor information for presence locations
#> ✔ Extracting predictor information for presence locations [35ms]
#>
#> ℹ Extracting predictor information for absence/background locations
#> ✔ Extracting predictor information for absence/background locations [64ms]
#>
# Train a Maxent model
model <- train(method = "Maxent",
data = data,
fc = "l")
maxentTh(model)
#> threshold
#> Fixed.cumulative.value.1.Cloglog 0.0320
#> Fixed.cumulative.value.5.Cloglog 0.1013
#> Fixed.cumulative.value.10.Cloglog 0.2317
#> Minimum.training.presence.Cloglog 0.1068
#> X10.percentile.training.presence.Cloglog 0.3373
#> Equal.training.sensitivity.and.specificity.Cloglog 0.4937
#> Maximum.training.sensitivity.plus.specificity.Cloglog 0.2880
#> Balance.training.omission..predicted.area.and.value.Cloglog 0.1068
#> Balance.training.omission..predicted.area.and.value.area 0.5096
#> Balance.training.omission..predicted.area.and.value.training.omission 0.0000
#> Equate.entropy.ofed.and.original.distributions.Cloglog 0.1412
#> Equate.entropy.ofed.and.original.distributions.area 0.4506
#> Equate.entropy.ofed.and.original.distributions.training.omission 0.0200