Skip to contents

Plot the Jackknife Test for variable importance.

Usage

plotJk(jk, type = c("train", "test"), ref = NULL)

Arguments

jk

data.frame with the output of the doJk function.

type

character, "train" or "test" to plot the result of the test on the train or testing dataset.

ref

numeric. The value of the chosen metric for the model trained using all the variables. If provided it plots a vertical line showing the reference value.

Value

A ggplot object.

Author

Sergio Vignali

Examples

# Acquire environmental variables
files <- list.files(path = file.path(system.file(package = "dismo"), "ex"),
                    pattern = "grd",
                    full.names = TRUE)

predictors <- terra::rast(files)

# Prepare presence and background locations
p_coords <- virtualSp$presence
bg_coords <- virtualSp$background

# Create SWD object
data <- prepareSWD(species = "Virtual species",
                   p = p_coords,
                   a = bg_coords,
                   env = predictors,
                   categorical = "biome")
#>  Extracting predictor information for presence locations
#>  Extracting predictor information for presence locations [20ms]
#> 
#>  Extracting predictor information for absence/background locations
#>  Extracting predictor information for absence/background locations [45ms]
#> 

# Split presence locations in training (80%) and testing (20%) datasets
datasets <- trainValTest(data,
                         test = 0.2,
                         only_presence = TRUE)
train <- datasets[[1]]
test <- datasets[[2]]

# Train a model
model <- train(method = "Maxnet",
               data = train,
               fc = "lq")

# Execute the Jackknife test for all the environmental variables using the
# metric AUC
jk <- doJk(model,
           metric = "auc",
           test = test)
#> Jk Test  ■■■■■■■■■■■■■                     39% | ETA:  2s - 00:00:1.5
#> Jk Test  ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■  100% | ETA:  0s - 00:00:3.8
#> 

# Plot Jackknife test result for training
plotJk(jk,
       type = "train",
       ref = auc(model))


#' # Plot Jackknife test result for testing
plotJk(jk,
       type = "test",
       ref = auc(model, test = test))